
Modal MIDI Keyboard
Created by John Park

https://learn.adafruit.com/modal-midi-keyboard

Last updated on 2025-03-04 10:17:07 AM EST

©Adafruit Industries Page 1 of 19

3

6

9

10

15

Table of Contents

Overview
• Parts
• PCB

Installing CircuitPython
• CircuitPython Quickstart
• Flash Resetting UF2

Build the Modal MIDI Keyboard

Code the Modal MIDI Controller
• Text Editor
• Download the Project Bundle
• Use the Modal MIDI Keyboard
• Make Some Sound
• Root Note Selection
• Mode Selection

How It Works

©Adafruit Industries Page 2 of 19

Overview

Play great sounding melodies and chords on a synthesizer without lots of piano
lessons by sticking with notes that sound good together! Modes, such as Major/
Ionian, Minor/Aeolian, Dorian, and Mixolydian, to name a few, are sets of relative
note intervals designed for this purpose, and now you can build your own keyboard
that will play within whichever key and mode you choose -- you can't hit a wrong note!

Your modal keyboard sends notes over USB MIDI to any software synthesizer, or
hardware synth with USB MIDI Host capabilities. Pick your key and mode on startup
and then start your jam!

For more on modes, check out this video (https://adafru.it/TCh) and take a look at this
page (https://adafru.it/TCd).

©Adafruit Industries Page 3 of 19

https://www.youtube.com/watch?v=a6d7dWwawd8
https://learningmusic.ableton.com/advanced-topics/modes.html
https://learningmusic.ableton.com/advanced-topics/modes.html

Parts

PCB
You can order these using the Gerber files
found later in the guide from a board
house such as JLCPCB, or by visiting this
OSH Park link (https://adafru.it/TBP). You
only need one PCB per keyboard, but
most board houses make them in multiples
of three or five for a minimum order.

The keyboard uses 21 keyswitches and keycaps.

Kailh Mechanical Key Switches - 10 packs
- Cherry MX Compatible
For crafting your very own custom
keyboard, these Kailh mechanical key
switches are deeee-luxe!Come in a pack
of 10 switches, plenty to make a...
https://www.adafruit.com/product/4996

©Adafruit Industries Page 4 of 19

https://learn.adafruit.com//assets/103293
https://learn.adafruit.com//assets/103293
https://learn.adafruit.com//assets/103294
https://learn.adafruit.com//assets/103294
https://oshpark.com/shared_projects/W2AiS0yO
https://oshpark.com/shared_projects/W2AiS0yO
https://www.adafruit.com/product/4996
https://www.adafruit.com/product/4996
https://www.adafruit.com/product/4996

DSA Keycaps for MX Compatible Switches
in Various Colors
Dress up your mechanical keys in your
favorite colors, with a wide selection of
stylish DSA key caps. Here is a 10 pack
different colored keycaps for your next
mechanical keyboard or...
https://www.adafruit.com/product/5097

Raspberry Pi Pico RP2040
The Raspberry Pi foundation changed
single-board computing when they
released the Raspberry Pi computer, now
they're ready to...
https://www.adafruit.com/product/4864

Tactile Switch Buttons (6mm tall) x 10 pack
Super-tall clicky momentary switches are
standard input "buttons" on electronic
projects. These work best in a PCB but
https://www.adafruit.com/product/1490

©Adafruit Industries Page 5 of 19

https://www.adafruit.com/product/5097
https://www.adafruit.com/product/5097
https://www.adafruit.com/product/5097
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/4864
https://www.adafruit.com/product/1490
https://www.adafruit.com/product/1490

1 x Little Rubber Bumper Feet
Pack of 4

https://www.adafruit.com/product/550

1 x USB cable
USB A to Micro-B

https://www.adafruit.com/product/592

2 x Brass M2.5 Standoffs 16mm tall
pack of 2

https://www.adafruit.com/product/2337

1 x Black Nylon Machine Screw and Stand-off Set
M2.5

https://www.adafruit.com/product/
3299

1 x Black Nylon Machine Screw and Stand-off Set –
M3 Thread Black Nylon Machine Screw and Stand-
off Set
M3

https://www.adafruit.com/product/
4685

M2.5 x 16mm screws x4

Get at a hardware store or from McMaster-
Carr here (https://adafru.it/QNA).

Installing CircuitPython
CircuitPython (https://adafru.it/tB7) is a derivative of MicroPython (https://adafru.it/BeZ)
designed to simplify experimentation and education on low-cost microcontrollers. It
makes it easier than ever to get prototyping by requiring no upfront desktop software
downloads. Simply copy and edit files on the CIRCUITPY drive to iterate.

CircuitPython Quickstart
Follow this step-by-step to quickly get CircuitPython working on your board.

Download the latest version of
CircuitPython for the Raspberry Pi

Pico from circuitpython.org

©Adafruit Industries Page 6 of 19

https://learn.adafruit.com//assets/103295
https://learn.adafruit.com//assets/103295
https://www.mcmaster.com/91292A115/
https://www.adafruit.com/product/550
https://www.adafruit.com/product/550
https://www.adafruit.com/product/592
https://www.adafruit.com/product/592
https://www.adafruit.com/product/2337
https://www.adafruit.com/product/2337
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/3299
https://www.adafruit.com/product/4685
https://www.adafruit.com/product/4685
https://www.adafruit.com/product/4685
https://www.adafruit.com/product/4685
https://www.adafruit.com/product/4685
https://github.com/adafruit/circuitpython
https://micropython.org
https://circuitpython.org/board/raspberry_pi_pico/

https://adafru.it/QaP

Click the link above and download the
latest UF2 file.

Download and save it to your desktop (or
wherever is handy).

Start with your Pico unplugged from USB.
Hold down the BOOTSEL button, and
while continuing to hold it (don't let go!),
plug the Pico into USB. Continue to hold
the BOOTSEL button until the RPI-RP2
drive appears!

If the drive does not appear, unplug your
Pico and go through the above process
again.

A lot of people end up using charge-only
USB cables and it is very frustrating! So
make sure you have a USB cable you
know is good for data sync.

©Adafruit Industries Page 7 of 19

https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/98753
https://learn.adafruit.com//assets/125993
https://learn.adafruit.com//assets/125993

You will see a new disk drive appear called
RPI-RP2.

Drag the adafruit_circuitpython_etc.uf2
file to RPI-RP2.

The RPI-RP2 drive will disappear and a
new disk drive called CIRCUITPY will
appear.

That's it, you're done! :)

Flash Resetting UF2
If your Pico ever gets into a really weird state and doesn't even show up as a disk
drive when installing CircuitPython, try installing this 'nuke' UF2 which will do a 'deep
clean' on your Flash Memory. You will lose all the files on the board, but at least you'll
be able to revive it! After nuking, re-install CircuitPython

flash_nuke.uf2
https://adafru.it/1afi

©Adafruit Industries Page 8 of 19

https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98756
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98758
https://learn.adafruit.com//assets/98759
https://learn.adafruit.com//assets/98759
https://datasheets.raspberrypi.com/soft/flash_nuke.uf2

Build the Modal MIDI Keyboard
This guide (https://adafru.it/TCe) is dedicated to designing and building the 21-Key
Pico Keyboard. You can jump straight to ordering PCBs using this section of the
guide (https://adafru.it/TCf), and then follow the steps for assembly on this
page (https://adafru.it/TCg).

©Adafruit Industries Page 9 of 19

https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/overview
https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/21-key-pico-keyboard#pcb-layout-3084613-7
https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/21-key-pico-keyboard#pcb-layout-3084613-7
https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/pico-keyboard-assembly
https://learn.adafruit.com/diy-pico-mechanical-keyboard-with-fritzing-circuitpython/pico-keyboard-assembly

Code the Modal MIDI Controller
Text Editor
Adafruit recommends using the Mu editor for using your CircuitPython code with the
Pico. You can get more info in this guide (https://adafru.it/ANO).

Alternatively, you can use any text editor that saves files.

©Adafruit Industries Page 10 of 19

https://learn.adafruit.com/welcome-to-circuitpython/installing-mu-editor

Download the Project Bundle
Your project will use a specific set of CircuitPython libraries and the code.py file. In
order to get the libraries you need, click on the Download Project Bundle link below,
and uncompress the .zip file.

Drag the contents of the uncompressed bundle directory onto your board's
CIRCUITPY drive, replacing any existing files or directories with the same names, and
adding any new ones that are necessary.

SPDX-FileCopyrightText: 2021 John Park for Adafruit Industries
SPDX-License-Identifier: MIT

Pico RP2040 Mechanical MIDI Modal Keyboard
7x3 mech keyboard
Each key sends MIDI NoteOn / NoteOff message over USB
Can be any scale/mode
Key combo sends MIDI panic (see bottom section of code)

import time
import board
from digitalio import DigitalInOut, Direction, Pull
import usb_midi
import adafruit_midi
from adafruit_midi.note_on import NoteOn
from adafruit_midi.note_off import NoteOff
from adafruit_debouncer import Debouncer

print("---Pico MIDI Modal Mech Keyboard---")

MIDI_CHANNEL = 1 # pick your MIDI channel here

midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=MIDI_CHANNEL-1)

def send_midi_panic():
print("All MIDI notes off")
for x in range(128):

midi.send(NoteOff(x, 0))

led = DigitalInOut(board.LED)
led.direction = Direction.OUTPUT
led.value = True

num_keys = 21

list of pins to use (skipping GP15 on Pico because it's funky)
pins = (

board.GP0,
board.GP1,
board.GP2,
board.GP3,
board.GP4,
board.GP5,
board.GP6,
board.GP7,
board.GP8,
board.GP9,
board.GP10,
board.GP11,
board.GP12,
board.GP13,
board.GP14,
board.GP16,
board.GP17,

©Adafruit Industries Page 11 of 19

board.GP18,
board.GP19,
board.GP20,
board.GP21,

)

keys = []
for pin in pins:

tmp_pin = DigitalInOut(pin)
tmp_pin.pull = Pull.UP
keys.append(Debouncer(tmp_pin))

root_notes = (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59) # used during config
note_numbers = (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83)

note_names = ("C2", "C#2", "D2", "D#2", "E2", "F2", "F#2", "G2", "G#2", "A2", "A#2",
"B2",

"C3", "C#3", "D3", "D#3", "E3", "F3", "F#3", "G3", "G#3", "A3", "A#3",
"B3",

"C4", "C#4", "D4", "D#4", "E4", "F4", "F#4", "G4", "G#4", "A4", "A#4",
"B4",)
scale_root = root_notes[0] # default if nothing is picked
root_picked = False # state of root selection
mode_picked = False # state of mode selection
mode_choice = 0

----- User selection of the root note -----
print("Pick the root using top twelve keys, then press bottom right key to enter:")
print(".")
print(". o o")
print("o o o o o o .")

while not root_picked:
for i in range(12):

keys[i].update()
if keys[i].fell:

scale_root = root_notes[i]
midi.send(NoteOn(root_notes[i], 120))
print("Root is", note_names[i])

if keys[i].rose:
midi.send(NoteOff(root_notes[i], 0))

keys[20].update()

if keys[20].rose:
root_picked = True
print("Root picked.\n")

lists of mode intervals relative to root
major = (0, 2, 4, 5, 7, 9, 11)
minor = (0, 2, 3, 5, 7, 8, 10)
dorian = (0, 2, 3, 5, 7, 9, 10)
phrygian = (0, 1, 3, 5, 7, 8, 10)
lydian = (0 , 2, 4, 6, 7, 9, 11)
mixolydian = (0, 2, 4, 5, 7, 9, 10)
locrian = (0, 1, 3, 5, 6, 8, 10)

modes = []
modes.append(major)
modes.append(minor)
modes.append(dorian)
modes.append(phrygian)
modes.append(lydian)
modes.append(mixolydian)
modes.append(locrian)

mode_names = ("Major/Ionian",

©Adafruit Industries Page 12 of 19

"Minor/Aeolian",
"Dorian",
"Phrygian",
"Lydian",
"Mixolydian",
"Locrian")

intervals = list(mixolydian) # intervals for Mixolydian by default

print("Pick the mode with top seven keys, then press bottom right key to enter:")
print(".")
print("o o o o o o o")
print("o o o o o o .")

while not mode_picked:
for i in range(7):

keys[i].update()
if keys[i].fell:

mode_choice = i
print(mode_names[mode_choice], "mode")
for j in range(7):

intervals[j] = modes[i][j]
play the scale
for k in range(7):

midi.send(NoteOn(scale_root+intervals[k], 120))
note_index = note_numbers.index(scale_root+intervals[k])
print(note_names[note_index])
time.sleep(0.15)
midi.send(NoteOff(scale_root+intervals[k], 0))
time.sleep(0.15)

midi.send(NoteOn(scale_root+12, 120))
note_index = note_numbers.index(scale_root+12)
print(note_names[note_index], "\n")
time.sleep(0.15)
midi.send(NoteOff(scale_root+12, 0))
time.sleep(0.15)

keys[20].update()
if keys[20].rose:

print(mode_names[mode_choice], "mode picked.\n")
mode_picked = True

scale = [] # create the base scale
for i in range(7):

scale.append(scale_root + intervals[i])

midi_notes = [] # build the list with three octaves
for k in range(7):

midi_notes.append(scale[k]+24)
for l in range(7):

midi_notes.append(scale[l]+12)
for m in range(7):

midi_notes.append(scale[m])

led.value = False
print("Ready, set, play!")

while True:

for i in range(num_keys):
keys[i].update()
if keys[i].fell:

try:
midi.send(NoteOn(midi_notes[i], 120))
note_index = note_numbers.index(midi_notes[i])
print("MIDI NoteOn:", note_names[note_index])

except ValueError: # deals w six key limit
pass

©Adafruit Industries Page 13 of 19

if keys[i].rose:
try:

midi.send(NoteOff(midi_notes[i], 0))
note_index = note_numbers.index(midi_notes[i])
print("MIDI NoteOff:", note_names[note_index])

except ValueError:
pass

Key combo for MIDI panic
. o o o o o .
o o o . o o o
. o o o o o .

if (not keys[0].value and
not keys[6].value
and not keys[10].value
and not keys[14].value
and not keys[20].value):

send_midi_panic()
time.sleep(1)

Use the Modal MIDI Keyboard
To test the keyboard, plug it into your computer and launch this handy Chrome
browser MIDI Monitor web app (https://adafru.it/C-3) to check that it is working.

Make Some Sound
MIDI note messages are fun to look at, but even better when the make some sound!
Use a software synthesizer that accepts MIDI messages (pretty much all of them do!).

Here are some examples of free, open source synths for Linux, Windows, and mac os:

Helm (https://adafru.it/C-a)•

©Adafruit Industries Page 14 of 19

https://www.midimonitor.com/#
https://www.midimonitor.com/#
https://tytel.org/helm/

VCV Rack (https://adafru.it/C-b)
Pure Data (https://adafru.it/C-c)
Ardour (https://adafru.it/C-d)

Launch your software synth and select the Pico CircuitPython keyboard as your MIDI
source.

This video shows how root and mode selection work on startup. You can start over
again at any time by pressing the reset button.

Root Note Selection
On startup, you can press each of the first 12 keys starting from the upper left corner
of the keyboard to preview/select your scale root note.

Press the bottom right key to enter/commit the most recently previewed note.

Mode Selection
Once your root note is picked, the Modal MIDI keyboard goes into mode selection
configuration. Press each of the keys on the top row of the keyboard to preview each
mode:

Major/Ionian
Minor/Aeolian
Dorian
Phrygian
Lydian
Mixolydian
Locrian

You'll hear each note of the selected mode play. Once you like your choice, press the
lower right key to enter.

Now, you can start playing all three octaves!

How It Works
Libraries

First, you'll import libraries for time , board , digitalio , usb_midi ,
adafruit_midi , and the adafruit_debouncer .

Next, you set your MIDI_CHANNEL variable to whichever real-world MIDI channel you
want to use. This can be anything from 1-16.

•
•
•

•
•
•
•
•
•
•

©Adafruit Industries Page 15 of 19

https://vcvrack.com/
https://puredata.info/
https://ardour.org/

The midi object is created to send over USB.

import time
import board
from digitalio import DigitalInOut, Direction, Pull
import usb_midi
import adafruit_midi
from adafruit_midi.note_on import NoteOn
from adafruit_midi.note_off import NoteOff
from adafruit_debouncer import Debouncer

print("---Pico MIDI Modal Mech Keyboard---")

MIDI_CHANNEL = 1 # pick your MIDI channel here

midi = adafruit_midi.MIDI(midi_out=usb_midi.ports[1], out_channel=MIDI_CHANNEL-1)

MIDI Panic

The send_midi_panic() function can be used to send a noteOff command on all
128 MIDI notes, which is used in rare cases where a note or notes get "stuck" in the
on state. You'll trigger this function with a special keyboard shortcut.

def send_midi_panic():
print("All MIDI notes off")
for x in range(128):

midi.send(NoteOff(x, 0))

Key Setup

You'll create a list of the 21 GPIO pins that will be used on the Pico, and then set
them all as digital input debouncer objects in a list named keys[] .

pins = (
board.GP0,
board.GP1,
board.GP2,
board.GP3,
board.GP4,
board.GP5,
board.GP6,
board.GP7,
board.GP8,
board.GP9,
board.GP10,
board.GP11,
board.GP12,
board.GP13,
board.GP14,
board.GP16,
board.GP17,
board.GP18,
board.GP19,
board.GP20,
board.GP21,

)

keys = []
for pin in pins:

tmp_pin = DigitalInOut(pin)

©Adafruit Industries Page 16 of 19

tmp_pin.pull = Pull.UP
keys.append(Debouncer(tmp_pin))

Note Lists

These variables are lists of MIDI note numbers and names, as well as state variables.

root_notes = (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59) # used during config
note_numbers = (48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59,

60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83)

note_names = ("C2", "C#2", "D2", "D#2", "E2", "F2", "F#2", "G2", "G#2", "A2", "A#2",
"B2",

"C3", "C#3", "D3", "D#3", "E3", "F3", "F#3", "G3", "G#3", "A3", "A#3",
"B3",

"C4", "C#4", "D4", "D#4", "E4", "F4", "F#4", "G4", "G#4", "A4", "A#4",
"B4",)
scale_root = root_notes[0] # default if nothing is picked
root_picked = False # state of root selection
mode_picked = False # state of mode selection
mode_choice = 0

User Config: Note Selection

You'll allow the user to select a root note using this section of code. It will wait until
the user presses the bottom right key, a.k.a. keys[20] , until it move on.

print("Pick the root using top twelve keys, then press bottom right key to enter:")
print(".")
print(". o o")
print("o o o o o o .")

while not root_picked:
for i in range(12):

keys[i].update()
if keys[i].fell:

scale_root = root_notes[i]
midi.send(NoteOn(root_notes[i], 120))
print("Root is", note_names[i])

if keys[i].rose:
midi.send(NoteOff(root_notes[i], 0))

keys[20].update()

if keys[20].rose:
root_picked = True
print("Root picked.\n")

Mode Lists

You'll create lists of the interval formulas of the seven modes, which are relative to the
root note. The modes[] list is a dictionary of these.

major = (0, 2, 4, 5, 7, 9, 11)
minor = (0, 2, 3, 5, 7, 8, 10)
dorian = (0, 2, 3, 5, 7, 9, 10)
phrygian = (0, 1, 3, 5, 7, 8, 10)
lydian = (0 , 2, 4, 6, 7, 9, 11)
mixolydian = (0, 2, 4, 5, 7, 9, 10)
locrian = (0, 1, 3, 5, 6, 8, 10)

©Adafruit Industries Page 17 of 19

modes = []
modes.append(major)
modes.append(minor)
modes.append(dorian)
modes.append(phrygian)
modes.append(lydian)
modes.append(mixolydian)
modes.append(locrian)

mode_names = ("Major/Ionian",
"Minor/Aeolian",
"Dorian",
"Phrygian",
"Lydian",
"Mixolydian",
"Locrian")

intervals = list(mixolydian) # intervals for Mixolydian by default

User Config: Mode Selection

The user now picks among the seven modes, with a preview played for each. The
bottom right key confirms the selected mode and then moves on.

print("Pick the mode with top seven keys, then press bottom right key to enter:")
print(".")
print("o o o o o o o")
print("o o o o o o .")

while not mode_picked:
for i in range(7):

keys[i].update()
if keys[i].fell:

mode_choice = i
print(mode_names[mode_choice], "mode")
for j in range(7):

intervals[j] = modes[i][j]
play the scale
for k in range(7):

midi.send(NoteOn(scale_root+intervals[k], 120))
note_index = note_numbers.index(scale_root+intervals[k])
print(note_names[note_index])
time.sleep(0.15)
midi.send(NoteOff(scale_root+intervals[k], 0))
time.sleep(0.15)

midi.send(NoteOn(scale_root+12, 120))
note_index = note_numbers.index(scale_root+12)
print(note_names[note_index], "\n")
time.sleep(0.15)
midi.send(NoteOff(scale_root+12, 0))
time.sleep(0.15)

keys[20].update()
if keys[20].rose:

print(mode_names[mode_choice], "mode picked.\n")
mode_picked = True

Main Loop

In the main loop of the program the keys are checked for updates with the debouncer.
If a key is pressed (fell) the associated noteOn message is sent, and when it it
released (rose) the noteOff message is sent.

©Adafruit Industries Page 18 of 19

for i in range(num_keys):
keys[i].update()
if keys[i].fell:

try:
midi.send(NoteOn(midi_notes[i], 120))
note_index = note_numbers.index(midi_notes[i])
print("MIDI NoteOn:", note_names[note_index])

except ValueError: # deals w six key limit
pass

if keys[i].rose:
try:

midi.send(NoteOff(midi_notes[i], 0))
note_index = note_numbers.index(midi_notes[i])
print("MIDI NoteOff:", note_names[note_index])

except ValueError:
pass

Panic Key Combo

If the five key pattern of the outer corners and the center key are pressed, the
send_midi_panic() function runs, turning off all notes.

Key combo for MIDI panic
. o o o o o .
o o o . o o o
. o o o o o .

if (not keys[0].value and
not keys[6].value
and not keys[10].value
and not keys[14].value
and not keys[20].value):

send_midi_panic()
time.sleep(1)

©Adafruit Industries Page 19 of 19

	Modal MIDI Keyboard
	Table of Contents
	Overview
	Installing CircuitPython
	Build the Modal MIDI Keyboard
	Code the Modal MIDI Controller
	How It Works

	Overview
	Parts
	PCB

	Installing CircuitPython
	CircuitPython Quickstart
	Flash Resetting UF2

	Build the Modal MIDI Keyboard
	Code the Modal MIDI Controller
	Text Editor
	Download the Project Bundle
	Use the Modal MIDI Keyboard
	Make Some Sound
	Root Note Selection
	Mode Selection

	How It Works
	Libraries
	MIDI Panic
	Key Setup
	Note Lists
	User Config: Note Selection
	Mode Lists
	User Config: Mode Selection
	Main Loop
	Panic Key Combo

